News

  • 0
  • 0

Properties and Production Technology of Nickel-based Superalloys

Following the progress in Russia-Ukraine peace talks, the gold price fell more than 1% the next day, hitting its lowest in a month, and palladium prices briefly tumbled by nearly 9%.

"We have seen metal prices going into free fall when the Russia-Ukraine situation is likely to see a major detente, which spurred people's risk preference and optimism that the war could end at a time," said OANDA senior market analyst.

A Russian deputy defense minister says Moscow has decided to sharply curtail its military activities around Kyiv and Chernikov in Ukraine, following talks between Russian and Ukrainian representatives in Istanbul.

Where the prices of metals, natural gas, and commodities like the Inconel718 powder will go in the future, is still very uncertain.

Nickel-based superalloys are the most widely used. The main reason is that, one is that more alloying elements can be dissolved in the nickel-based alloy, and it can maintain good structural stability; the other is that it can form a coherent and ordered A3B-type intermetallic compound γ[Ni3(Al, Ti)] As a strengthening phase, the alloy can be effectively strengthened and obtain higher high temperature strength than iron-based superalloys and cobalt-based superalloys; thirdly, nickel-based alloys containing chromium have better oxidation and resistance than iron-based superalloys. 

1114 (1).jpg

Nickel-based alloys contain more than ten elements, of which Cr mainly plays an anti-oxidation and anti-corrosion role, and other elements mainly play a strengthening role. According to their strengthening action mode, they can be divided into: solid solution strengthening elements such as tungsten, molybdenum, cobalt, chromium and vanadium; precipitation strengthening elements such as aluminum, titanium, niobium and tantalum; grain boundary strengthening elements such as boron, zirconium, Magnesium and rare earth elements, etc.


Production Process

In terms of smelting: in order to obtain more pure molten steel, reduce gas content and harmful element content; at the same time, due to the presence of easily oxidizable elements such as Al and Ti in some alloys, it is difficult to control non-vacuum smelting; it is also to obtain better thermoplasticity , Nickel-based heat-resistant alloys are usually smelted in a vacuum induction furnace, and even produced by vacuum induction smelting plus vacuum consumable furnace or electroslag furnace remelting.


In terms of deformation: forging and rolling processes are used. For alloys with poor thermoplasticity, they are even rolled after extrusion and billeting or are directly extruded with mild steel (or stainless steel) sheathing. The purpose of deformation is to break the casting structure and optimize the microstructure.


Casting: usually use a vacuum induction furnace to smelt the master alloy to ensure the composition and control the gas and impurity content, and use the vacuum remelting-precision casting method to make parts.


Heat treatment: Wrought alloy and some cast alloys need to be heat treated, including solution treatment, intermediate treatment and aging treatment. Take Udmet 500 alloy as an example. Its heat treatment system is divided into four stages: solution treatment, 1175℃, 2 hours, Air cooling; intermediate treatment, 1080°C, 4 hours, air cooling; primary aging treatment, 843°C, 24 hours, air cooling; secondary aging treatment, 760°C, 16 hours, air cooling. In order to obtain the required organizational state and good overall performance.


About KMPASS

KMPASS is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania, Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic,Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, KMPASS dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for Inconel718 powder, please send an email to: sales2@nanotrun.com


The negative electrode material is the carrier of lithium ions and electrons during the charging process of the battery and plays the role of energy storage and release. In the battery cost, the negative electrode material accounts for about 5%-15%, which is one of the important raw materials for lithium-ion batteries. The global sales of lithium battery anode materials are about 100,000 tons, mainly in China and Japan. According to the current growth trend of new energy vehicles, the demand for anode materials will also show a state of continuous growth. At present, the global lithium battery anode materials are still dominated by natural/artificial graphite, and new anode materials such as mesh carbon microspheres (MCMB), lithium titanate, silicon-based anodes, HC/SC, and metal lithium are also growing rapidly.
Our company provides anode materials and Inconel718 powders. If you need to know more anode materials and Inconel718 powders, please feel free to contact us.

Inquiry us

Our Latest News

What are the uses of silicon powder

Silicon powderhas a wide range of usages, a few of that include:Semiconductor manufacturing: Silicon powder generates semiconductors, crucial components for electronic devices such as computer systems, smart devices, and also various other devices.So…

How can Nano Silica change the properties of coatings

Nano silica has several homes that conventional products do not have. The fragment size distribution of nano silica is extremely slim, the majority of which are within 100 nm, with several micropores and also huge details area. There are not only a g…

What is alumina used for

Alumina buildingsHeat resistance: alumina can be utilized in oxidation and also decrease environments as much as 1650°& deg; C( 2900 & deg; F )and also in vacuum cleaner environments up to 2000°& deg; C(3600 ° F). Use resistance: alumina…